A Metric Evaluation of Game Application Software

Alan C. Jamieson, Nicholas A. Kraft, Jason O. Hallstrom and Brian A. Malloy
Computer Science Department
Clemson University
Clemson, SC 29634, USA
{ajamies,nkraft,jasonoh,malld@cs.clemson.edu

Abstract art, music, and voice. To manage large teams of program-
mers, most current game developers use thel@hguage

In this paper we evaluate the exploitation of object tech- and attempt to exploit the benefits of object technology.
nology as it is used in a test suite of game application soft- In this paper we evaluate the exploitation of object tech-
ware. We use several well-known metrics and apply them nology as it is used in a test suite of game application soft-
to both the game application software and a test suite of ware. We use several well-known metrics and apply them
language processing tools to form a basis of comparing the to both the game application software and a test suite of
two groups. We have developed a metric computation sys- language processing tools to form a basis of comparing the
tem that uses the*ge infrastructure to analyze the+@ two groups. We have developed a metric computation sys-
programs. We present some results for the two groups of tem that uses thg*re infrastructure to analyze the+€pro-
applications and draw some conclusions about the modu- grams [10, 11]. We present some results for the two groups
larity, use of inheritance, and the complexity of methods in of programs and draw some conclusions about the modu-
these applications. larity, use of inheritance and the complexity of methods in
the applications.

The literature on object-oriented software metrics is ex-
tensive; see, for example, the detailed surveys presented
in [3] and [5]. By contrast, there has been relatively little

As software developers shift their priorities to the con- WOrk focused on applying metrics to assess the relative de-
struction of complex large scale systems that are easy to SI9N characteristics of systems in different application do-
extend, modify, and maintain, the inadequacy of tradi- Mains. Aun_lque contribution ofqurwork is the gppllcqt|on
tional approaches and methodologies becomes apparent.Of object-oriented software metrics to the consideration of
The object-oriented approach to software development ad- 92ming applications.
dresses some of these inadequacies and makes it possible to [N the next section we provide background about the
model systems that are close to their real world analogues. €rminology that we use, about game APIs, and about the
The goal of object-oriented design is to accurately identify g*re system. In Section 3 we describe the construction of
the principle roles in a process, assign responsibilities to OUr metric computation system and define the metrics that
these roles and encapsulate them in an object. The benefitsWe use to evaluate the exploitation of object orientation in
of object technology are extensibility, ease of modification 9ame application software. In Section 4 we provide results

1. Introduction

and ease of reuse.
The development of game application software has fol-
lowed this pattern of migration from traditional approaches

from our evaluation of the test suite of game software and
language processing tools. In Section 5 we describe the
limited research that is similar to our work. Finally, in Sec-
tion 6 we draw conclusions and describe our future work.

to the exploitation of object technology for its acknowl-
edged benefits. In fact, the object-oriented paradigm seems
to have a natural application to the domain of graphics, 2. Background

Graphical User Interfaces (GUIs) and game application

programming. Early games such as Quake and Doom were In this section we provide background about the termi-
implemented in C because of its small learning curve and nology and tools that we use in this paper. In Section 2.1
its fast compilation and execution speed. However, cur- we review some of the Application Programmer Interfaces
rent game development requires large teams of program- (APIs) used in game development. In Section 2.2 we re-
mers and analysts as well as other kinds of talent such as view theg?*re system that analyzes the applications in our

Submitted to The Future Play Conference
October 13-15, 2005, Michigan State University Ml

test suite [10, 11]. Finally, in Section 2.3 we review the use
of metrics in the software life cycle.

2.1. Game APIs

port application development [4, 23, 25]. The lack of tool
support for applications using the+r€language is espe-
cially noteworthy.

One explanation for the lack of software tools for+G@s
the difficulty in constructing a front-end for the language,

In early game development, DOS-based games were 55 gescribed in references [2, 9, 12, 20, 21, 22]. This diffi-
generally implemented with commands issued directly to culty results, in part, from the complexity and scale of the

the computer's hardware. These early DOS games used |gnguage. However, a more important problem is the ambi-

calls to device drivers for input devices such as a mouse or
joystick and calls to specific sound cards such as Creative
Labs’ Sound Blaster. Video programming was the most
difficult aspect of game development where the generation
of fast and smooth graphics required significant program-
ming skill. Graphics code frequently exploited the speed of

assembly language programming and depended on certain

hardware-level features of the VGA graphics adapter.
Currently, few game developers write register-level
video code, instead relying on prewritten Application Pro-
grammer Interfaces (APIs) that form a layer of software be-
tween the game and the hardware. The most popular API
in current usage is DirectX using ther€language vehi-
cle [15, 16]. The DirectX API provides low-level access
to multimedia hardware in a device-independent manner.
New versions of DirectX are released to permit game de-

guity inherent in many €+ language constructs[9, 12, 19,
22]. Many G+ constructs cannot be recognized through
syntactic considerations alone. For example, the difficulty
in distinguishing a declaration from an expression can only
be resolved by performing name lookup[1, 9].

The d're tool chain exploits thgcc Abstract Semantic
Graph (ASG),GENERIC, to provide an Application Pro-
grammers Interface (API) to facilitate easy access to infor-
mation about declarations, including classes, functions, and
variables, as well as information about scopes, types, and
control statements. The advantages of the ¢pol chain is
that it can analyze any program that can be compiled by the
gcc C++ compiler. We use the“ge tool chain to construct
our metric computation system and we describe this system
in Section 3.

velopers to take advantage of hardware advances as they _] _
occur, even after games have shipped. However, the Di- 2-3. Object-Oriented Metrics

rectX APl is specific to the Microsoft Windows platform.
With the popularity of the Linux operating system game
developers became interested in platform-independent

game programming and several APIs have been introduced,

including SVGALIb, ClanLib and SDL. The most popular
of the platform-independent game APIs is the Simple Di-
rectmedia Layer (SDL) [18]. SDL is a cross-platform mul-
timedia library that has already been used to port a number
of Windows-based games to Linux.

The SDL API supports virtually all of the major op-
erating systems including Linux, Windows, Solaris and
BSD variants including FreeBSD and MacOS. In addi-
tion to fast graphics support, SDL provides interfaces for
playing sound, accessing CD-ROM drives and achieving
portable multi-threaded applications. SDL is released un-
der the GNU LGPL and has accumulated a collection of
user-contributed libraries that provide additional function-
ality for game developers.

2.2. The ¢'re Tool Chain
Software tools are fundamental to the comprehen-

sion, analysis, testing and debugging of application sys-
tems. Tools can automate repetitive tasks and, with large

scale systems, can enable computation that would be pro-

hibitively time consuming if performed manually. The Java
language is well supported with libraries and tools to sup-

Software metrics are quantitative measures that enable
software developers, testers, and maintainers to evaluate
the static properties of a software system [5]. Software
metrics are computed and the resultant data are collected,
analyzed, and compared throughout the lifetime of a soft-
ware system to evaluate improvement or deterioration of
the software system. Software metrics are also useful for
identifying problem modules of a software system.

Object-oriented metrics were introduced to measure
software properties specific to object-oriented software
systems, including properties pertaining to classes and their
object instances [3, 5]. The primary focus of object-
oriented metrics is measuring properties of classes and their
instances. Properties of interest include scope of properties,
object complexity, coupling, and cohesion.

3. Methodology

In this section we present an overview of our metrics
computation system that enables us to evaluate the ex-
ploitation of object technology in game application soft-
ware. In Section 3.1 we describe details of the system and
its use of the fye tool chain [10, 11]. In Section 3.2 we
describe the metrics that we compute to facilitate our eval-
uation of the game software.

TU
Files

TUxformer

GXL
Files

g4xformer

N

g
g

A

L,

Filter
Lists

Metrics

<<API>>

Metrics Tool

R

CppInfo

Figure 1. System overview. This figure illustrates the important components in our metrics computation
system that we constructed to compute the metrics defined in Section 3.2 and to perform the case study

presented in Section 4. The metrics computation system
Cpplnfo API, and a Metrics Tool that interacts with the API

4re tool chain, including the
++ program.

consists of the g
to extract information about a C

3.1. Overview of the Metrics Computation System

Figure 1 provides an overview of our metrics compu-
tation system that we constructed to compute the metrics
defined in Section 3.2 and to perform the case study pre-
sented in Section 4. Our metrics computation system con-
sists of the @re tool chain, including th€pplnfo API, and
a Metrics Tool that interacts with the API to extract infor-
mation about a € program. Output of our system is a set
of statistics for each computed metric.

Input to our system is the source code for & @ro-
gram, shown in the far left of the top row of the figure,
which is used as input to thgcc compiler. Using the
-fdump-translation-unit-all option, we obtain
a plain text representation of the ASG for each @ansla-
tion unit in the program. We use these plain text ASG rep-
resentations, known as files, as input to out Uxformer
subsystem, shown in the middle of the top row of the fig-
ure. For eachu file, theTUxformer subsystem creates an
in-memory representation of the encoded ASG, prunes the
ASG, and serializes the ASG to GXL.

We use the set of GXL files produced Bxformer as
input to theg4xformer subsystem, shown in the far right
of the top row of the figure. Theg4xformer subsystem
parses each GXL file and creates an in-memory represen-
tation of the encoded ASG. The subsystem then links the
representations of each individual ASG to create a unified
representation of the entirer€program. After linking is
complete, the subsystem filters, from the unified represen-
tation, language elements that are identified as defined in a
filename contained in the filter lists, shown in the far right
of the top row of the figure.

The Cpplnfo API, shown in the far right of the bottom
row of the figure, provides access to information from the
unified representation of a wholer€program created by
the g4xformer subsystem. OuMetrics Tool, shown in
the middle of the bottom row of the figure, instantiates and
queries the API to gain access to the information about

classes and functions needed to compute the metrics de-
fined in Section 3.2. Output of thdetrics Tool, shown in

the far left of the bottom row of the figure, is available in a
variety of formats and consists of a set of statistics for each
computed metric.

3.2. Overview of the Computed Metrics

In this section we define the object-oriented metrics that
we compute for the case study presented in Section 4. We
define one metric measuring complexity, Weighted Meth-
ods per Class, and three metrics measuring the use of inher-
itance: Depth of Inheritance Tree, Number of Ancestors,
and Number of Children. We also use additional metrics
that measure modularity and delegation.

3.2.1. Metric 1. Weighted Methods per Class (WMC).
WMC measures the complexity of an object and is an indi-
cator of the time and effort required to develop and main-
tain a class.

Given a clas€ with methoddM;, My, ..., My, weighted
with cyclomatic complexitycy, Cp, . . ., Cy, respectively, the
metric is computed as

n

WMC(C) = _;Ci

Given a methodV with control flow graphG = (V,E), let
D equal the set of decision nodes\in where a decision
node represents one §fif, switch, for, while, do while,
catch}. The cyclomatic complexity, of M is the number
of linearly independent paths {& and is computed as

c(M)=|D|+1

3.2.2. Metric 2: Depth of Inheritance Tree (DIT). DIT

is the length of the maximum path from a class to the root

of its inheritance hierarchy, relates to scope of properties,

and is an indicator of the number of ancestor classes that
can potentially affect a class.

SDL Game Applications Language Processing Applications

ASC | AvP | Freespace2 Scorched3D| Doxygen| g*re | Jikes| Keystone

Version 1.16.1.0 cvs cvs 38.1 1.39.1| 1.04| 1.22 0.2.3
Source Files 436 509 652 1069 260 | 128 75 123
Translation Units 199 222 220 513 122 60 38 52
C++ Translation Units| 194 95 220 492 90 60 38 52
LOC (~) 130K | 318K 365K 110K 200K | 10K | 70K 30K

Table 1. Testsuite of SDL Game Application Software and Language Processing Tools.

Given a clas€ with a set of base classB€, the metric
is computed as

0 if |BC| = 0
D'T(C):{ max({DIT (B)): B € BC})+1 if |BC|>0

3.2.3. Metric 3: Number of Ancestors (NOA). NOA is

the total number of ancestor classes of a class. In the ab-
sence of multiple inheritance, NOA is equivalent to DIT. In
the presence of multiple inheritance, care must be taken to
avoid counting an ancestor class more than once, due to the
possibility of a diamond-shaped inheritance hierarchy.

3.2.4. Metric 4: Number of Children (NOC). NOC is
the number of immediate successors of a class and mea-
sures the breadth of inheritance.

Given a clasC with a set of derived classd3C, the
metric is computed as

NOC(C) = |DC|
4. Case Study

In this section we describe the results that we obtained
using our metrics tool to evaluate game application soft-
ware. We evaluate game software by comparing metrics
computed for four games with four popular language pro-
cessing applications. The results that we report in this sec-
tion capture information about the sizes of the programs
and the exploitation of object technology as measured by
metrics described in Section 3. All experiments were ex-
ecuted on a workstation with aAMD Athlon64 3000+
processor, 1024 MB of PC3200 DDR RAM, and a 7200
RPM SATA hard drive, running the Slackware 10.1 operat-
ing system. The programs were compiled usingversion
3.3.4.

In the next section we describe the eight (8) applica-
tions that form our test suite: four game applications im-

use of inheritance in game applications. In Section 4.4 we
provide results describing the complexity of member func-
tions in classes. Finally, in Section 4.5 we provide results
for games implemented in DirectX.

4.1. The Test suite of Game Applications and Lan-
guage Processing Tools

Table 1 lists eight applications, or test cases, that form
the test suite that we use in our study, together with size
statistics about each test case. The top row of the ta-
ble lists the names that we use to refer to each of the
test cases. The game applications are listed in the first
four columns and the language processing applications are
listed in the last four columns. The four game applications
are: Allied Strategic Comman@ASC), Alien vs Preda-
tor (AvP), Freespace AFreespace?), and Scorched 3d
(Scorched3D). The Application Programmer’s Interface
(API) used for the four games is the Simple Directmedia
Layer (SDL), described in Section 2. The four language
processing applications, listed in the last four columns of
Table 1, are:Doxygen g*re, Jikes andKeystone Doxy-
genis a documentation system for€ C, and Java [26]
andg’re is part of the infrastructure for reverse engineer-
ing that we use to construct our metrics tool [10, 1likes
is a Java compiler system [6] ai@ystonds a parser and
front-end for ISO G+ [8, 14].

The rows of Table 1 list some statistics and coarse-
grained size metrics for the test cases: the first row lists
the version numbekersion; the second row lists the num-
ber of source filesSource Files, for each test case; the
third row lists the number of translation uni®anslation
Units, which includes both € and C translation units; the
fourth row lists the number of G translation units C++
Translation Units), which is only G+ code; and finally,
the last row of the table lists the (approximate) thousands

plemented using the SDL API and four language process- of lines of code (KLOC) for each test case, not counting
ing applications, and provide some results using coarse- blank or comment lines. For example, the largest game
grained size metrics for the applications. In Section 4.2 we in our test suite idreespace 2, a Version that we ob-
provide results describing the modularity of game applica- tained from a cvs repository (on July 22, 2005), consist-
tions and in Section 4.3 we provide results describing the ing of 652 source files, 220ranslation Units and 220

Classes Functions

Count | Abstract| Root [Leaf | Count| Member | Virtual | Pure
ASC 1389 58 901 | 390 | 8693 7775 2170 | 208
AvP 1732 28 | 1369 | 327 | 11548 9350 1216 90
Freespace?2 332 0 320 12 9468 1687 48 0
Scorched3D 799 50 405 | 364 | 8432 7210 1907 | 112
Doxygen 315 9 153] 157 | 5422 4570 2159 249
gire 78 17 | 27| 37| 849 798 303 | 106
Jikes 378 5 210 | 158 | 5717 5685 602 16
Keystone 160 14 49 87 2354 2306 1178 | 189

Table 2. Modularity. This table presents results about the modularity of game application software.

C++ Translation Units. Since the number ofransla- plication in our test suite; the second highest class total is
tion Units is the same as the number @+ Translation the ASC game containing 1389 classes. It is somewhat
Units, theFreespace 2 test case contains no C code. The surprising that thédvP game contains a large number of
Freespace 2 test case consists of 38%.0C, as illustrated classes in view of the large number of C files in the pro-
on the last row, third column of Table 1. gram. The results listed in Table 1 show that 4w game

The results in Table 1 suggest that, for the test cases contains 222Translation Units, but only 95 of these are
that we have chosen for our study, the game applications C++ Translation Units; which means that over half of the
are larger than the language processing applications. For translation units consist of C code. However, tfiee tool
example, the average number for the game applications is uses an Abstract Syntax Graph (ASG) representation of
231 KLOC, whereas the average number of KLOC for the the input application; at the level of the ASG, all template
language processing applications is 78 KLOC; thus, the av- classes are instantiated so that the count of classes listed in
erage game application in our test suite is three times as the first column of data in Table 2 includes classes and in-

large as the average language processing application. stantiated template classes and all of these structures may
participate in inheritance and appear anywhere in an inher-
4.2. Modularity in Game Application Software itance tree constructed for the Depth of Inheritance Tree,

Number of Children and Number of Ancestor metrics.

Table 2 presents results that capture information about ~ The results in Table 2 suggest that, for our test suite of
the modularity of game application software. The rows in four game applications and four language processing tools,
Table 2 list the test cases, where the game applications arethe game applications may be more modular than the lan-
listed in the first four rows and the language processing guage processing tools. For example, the total number of
tools are listed in the last four rows. The columns sum- classes in the four game applications is 4252 classes. The
marize results describing the classes and functions in the results in Section 4.1 show that the total KLOC for the four
respective test cases: the first four columns summarize in- game applications is 923 KLOC, for a classes to KLOC ra-
formation about the classes and the last four columns sum- tio of 4.6. Similarly, the total number of classes in the four
marize information about the functions. For example, the language processing tools is 931 classes. The results in
Alien vs Predator (AvP) game, listed on the second row Section 4.1 show that the total KLOC for the four language
of the table, contains 1732 classes: 28 of the classes are ab{rocessing tools is 310 KLOC, for a classes to KLOC ratio
stract,Abstract, 1369 of the classes contain no ancestors of 3.0.
in the inheritance tre&koot, and 327 of the classes contain
no children and have at least one ancestor in the inheritance 4.3. Inheritance in Game Application Software
tree,Leaf. The number oRoot andLeaf classes for the
AvP game together comprise 1696 classes so that the in- Tables 3 and 4 present results for thepth of Inher-
heritance tree contained only 36 interior classes. Moreover, itance Tree(DIT) and Number of Children(NOC) met-

the (AvP) game contains 11,548 functior@ount, 9350 of rics respectively. Due to space limitations, we have elided
these functions were members of a clddggmber, 2170 the results for thé&lumber of Ancesto@OA) metric; the

of these functions were virtuaVirtual, and 208 of these interested reader may consult reference [7] for results on
functions were pure virtuaRure. the NOA metric. The rows in Tables 3 and 4 list the test

The AvP game contains more classes than any other ap- cases. The columns list results for the metrics, where the

= c P c
c 3 S| o c 3 S| o
®© a © e x © o © e
S| 3 9] ° Q| O §=] 4] ° Q| O
= | = =] = | = = = =] = | =
ASC 0| 4 |06451| 0.9906| 0 | O ASC 0| 561 | 12.9770| 30.3646 | 4 | O
AvP 0| 5|0.3043| 0.7068| 0 | O AvP 0| 107 | 7.2898 | 105944 | 3 | 3
Freespace2| 0 | 1 | 0.0361| 0.1869| 0 | O Freespace2| 0 | 123 | 6.6596 | 15.7072 | 3 | 3
Scorched3D|| 0 | 9 | 0.9312| 1.4957| 0 | O Scorched3D|| 0 | 240 | 17.3717| 19.0581 | 12 | 3
Doxygen 0] 4]09270|1.1220| 1 | O Doxygen O | 430 | 27.6762| 57.4967 | 7 | 7
g*re 0|5 |18974|15921| 2| O d*re 0| 206 | 17.7564| 30.2694 | 13| O
Jikes 0] 3]0.7143|0.959| 0| O Jikes 0 | 2016 | 32.3968| 119.1240| 13 | 10
Keystone 0| 5| 1.7938| 1.4498| 2 | O Keystone 0 | 557 | 24.3875| 52.4735 | 15 | 14
Table 3. Depth Of Inheritance Tree. Table 5. Weighted Methods per Class.
3 c
5 a -_‘55 g deviation, 1.4957, so that this test case had the largest vari-
é ?Eé % g % § ance in the depth of its inheritance tree. The median and
mode for theScorched3D game are listed in the last two
ASC 0| 27| 0.3139| 1.549| 0 | O columns of the fourth row and these values are zero, as they
AvP 0| 30| 0.1207| 0.8497| 0 | O are for all of the game application test cases.
Freespace2| 0 | 12 | 0.0361| 0.6586| 0 | O
Scorched3Dll 0 | 11 | 0.2003]1 0.9122] 0 | O 4.3.2. Number of Children (NOC). Table 4 presents the
results for NOC that we computed for the eight test cases.
Doxygen 0 | 48| 0.3587| 2.7672| 0 | O .
7 For example, the second row of Table 4 lists NOC results
g're 0| 6 | 04872 1.1705|{ 0 | O . X L
s for the Alien vs Predator game AvP) with a minimum
Jikes 0| 26| 04550| 247411 0 | O . . .
Kevsi 010 06063 165631 0 1 0 number of children of 0 and a maximum number of chil-
cystone - - dren of 30, the broadest inheritance tree of all of the test

Table 4. Number of Children.

first three columns list the minimunMin, the maximum,
Max and the meaniMean, values for the respective met-
rics. The final three columns in the tables list the standard
deviation from the mearStd Dev, the medianMedian
and the modeMode. The median value is the value for
which an equal number of values lie above and below the
median; the mode is the most common value.

The DIT metric measures the length of the maximum

programs. Thé\P game had a mean value of 0.1207, and
a standard deviation of 0.8497, the largest variance in NOC
for any of the test cases. The median and mode foAtte
game are listed in the last two columns of the second row
and these values are zero, as they are for all of the game
application test cases.

The results in Table 4 suggest that the inheritance trees
for language processing tools are broader than the inheri-
tance trees for game applications. The average ofitie
values for language processing tools is 22.5 classes and
the average of th#ax values for game applications is 20
classes. However, the classes to maximum breadth ratio of

path from a class to the root of the inheritance tree and the the language processing tools is 41.37 and for the language
NOC metric measures the number of immediate successorstools is 212.6.

of a class in the inheritance tree. Intuitively, the DIT metric

measures the depth of the inheritance tree and the NOC 4.4. Complexity in Game Application Software

metric measures the breadth of the inheritance tree.

4.3.1. Depth of Inheritance (DIT). Table 3 presents the
results for DIT that we computed for the eight test cases.
For example, the fourth row of Table 3 lists DIT results for
the Scorched3D game with a minimum depth of 0 and a
maximum depth of 9, the longest inheritance depth of all of
the test programs. Moreover, tiseorched3D game had

Table 5 presents results for théeighted Methods per
Class(WMC) metric. The rows in the table list the test
cases. The columns list results for the WMC metric, where
the first three columns list the minimurin, the maxi-
mum,Max and the meariflean, values for weighted meth-
ods. The final three columns in the tables list the standard
deviation from the mearStd Dev, the medianMedian

the largest mean value, 0.09312, and the largest standardand the modéeyiode.

N
3 ~ 9 5. Related Work
S o
IS L Q
k=) O o 4
Q > ° (0] . . . L
= O o C The literature on object-oriented software metrics is ex-
Classes 1938 | 1963| 715| 110 [3] and [5]. By contrast, the Ively little worl
DIt 9 7 i1 7 focused on applying metrics to assess the relative design
NOC 9 312 13 39 characteristics of systems in different application domains.
[OGS 331K | 665K | 451K | 416K Further, our work is unigue in its consideration of gaming
®) applications. Other researchers have, however, considered

comparisons that are similar in spirit to our own. In this

Table 6. Testsuite of DirectX Game Application ! .) .
section, we briefly consider several relevant studies.

Software.

Paulsonet al. [17] perform an empirical evaluation of
the differences between open-source and proprietary soft-
ware. Their goal is to evaluate the validity of common per-
ceptions regarding open-source projects. Their study con-

The results in Table 5 show that the methods in the lan- siders five dimensions of comparison) gystem growth,
guage processing tools are more complex than the methods(ii) design creativity, iii) complexity, {v) reliability, and
in the game application software. For example, the average (v) modularity. For each dimension of comparison, they
maximum value of the language processing tools is 802.25, apply a series of metrics to a testsuite consisting of three
whereas the maximum value of the game applications is open-source projects and three proprietary projects. Based

only 257.75. Similarly, the averagdean value for the on the resulting figures, the authors conclude that relative
language processing tools is 25.55, whereas the avereageto their proprietary counterparts, open-source projegts (
Mean value for the game applications is only 11.07. do not grow faster,ii) foster more creativity,ii{) are more

complex, {v) are more reliable, and/Y are less modular.
We note that we share the authors’ interest in complex-

4.5. Results for the DirectX API ity and modularity, and use a similar metric for evaluating
complexity.

In this section we describe some preliminary results that ~ MacCormacket al. [13] focus on the modularity of
we obtained for four commercial games implemented with open-source software. Their approach is novel in its use of
the DirectX API. Our ongoing work includes the construc- metrics defined ovedesign structure matrixei24]. Each
tion of an analysis system for the Windows platform that matrix captures the dependencies between the source files
will enable us to automate our analysis and metric compu- in a given implementation. A value of one at positionj)
tation. The results in this section were computed by hand denotes the existence of a call from a function defined in
and we present them to provide some basis for comparison file i to a function defined in filg. Similarly, a zero value
with the SDL game application software and the language denotes the absence of such a call. The authors consider
processing tools presented in the first part of this section. two metrics. The first metric estimates the number of files
affected, on average, by an arbitrary system change. The
Table 6 lists four games implemented with the Di- second metricis based on a clustering algorithm that groups

rectX APIl. The games ardllegiance (ALLEGIANCE) collections of interdependent files. The metric estimates
from Microsoft ResearchCivilization: Call to Power the cost of coordination between the individuals responsi-
2 (Civ:CTP2) from Activision, Battle of Britain (BoB) ble for implementing the various elements by allocating a

from Empire Interactive andDescent: Freespace 2 higher cost tanter-cluster dependencies, and a lower cost
(FReespPAcR) from Volition Inc. The first row of the table to intra-cluster dependencies. When applied to their test-
contains information about the number of source files and suite, which consists of one open-source system and one
the second row lists the number of classes. In computing proprietary system, the resulting figures contradict the re-
the number of classes we counted template classes and notsults of Paulsoret al. the open-source system appears
their instantiations. The third row of Table 6 lists the max- more modular. Later, however, the authors evaluate a major
imum depth of the inheritance tree (DIT) and the fourth redesign of the proprietary system which fares better: it is
row lists the maximum number of children (NOC). Finally, more modular than the open-source system. We note that
the last row of the table lists the lines of code KLOC, not the size of the testsuite makes it difficult to draw definitive
including blank or comment lines. conclusions.

6. Conclusions and Future Work

In this paper we have evaluated the exploitation of ob-
ject technology in a test suite of game application software.
We used metrics that describe the size, modularity, delega-
tion, inheritance, and complexity of the applications. We
developed a metric computation system that useg/tre
infrastructure to analyze the*€programs [10, 11], and we
use the system to apply the metrics to the game application
software and a test suite of language processing tools to
form a basis of comparing the applications in the two do-
mains. Our game applications are implemented using the
SDL [18] and DirectX APlIs.

We have shown that, for our test suite, the game applica-
tions are more modular than the language processing tools
and that the methods in the game applications are less com-
plex than the methods in the language processing tools. Our
metrics computation system does not include library code
in its analysis and it is likely that much of the complexity
of the methods is game applications lies in the SDL or Di-
rectX APIs. Our future work includes modification of the
g*re infrastructure to extrapolate the number of template
classes rather than the number of instantiations of template
classes. We are also extending tifee infrastructure to
automate computation of the DirectX metrics.

References

[1] American National Standards Institute. International
Standard: Programming Languages - C++ Number
14882:1998(E) in ASC X3. ISO/IEC JTC 1, September
1998.

F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana,
S. Srinivas, and B. Winnicka. Sage++: An object-oriented
toolkit and class library for building Fortran and C++ re-
structuring tools. InThe second annual object-oriented
numerics conference (OON-SKpages 122-136, Sunriver,
Oregon, USA, 1994.

Shyam R. Chidamber and Chris F. Kemerer. A metrics
suite for object oriented desighEEE Trans. Software Eng.
20(6):476-493, 1994.

S. F. Cohen. Quest for Jav&ommunications of the ACM
41(1):81-83, January 1997.

Norman E. Fenton and Shari Lawrence Pfleegaoftware
Metrics: A Rigorous and Practical ApproachPWS Pub-
lishing Co., Boston, MA, USA, 1998.

IBM Jikes Project. Jikes version 1.22.
http://jikes.sourceforge.net.

A. C. Jamieson, N. A. Kraft, J. O. Hallstrom, and B. A.
Malloy. A metric evaluation of game software. Technical
report, Clemson University, 2005.

Keystone Project. Keystone version 0.2.3. Available at
http://keystone.sourceforge.net.

Gregory Knapen, Bruno Lague, Michel Dagenais, and Et-
tore Merlo. Parsing C++ despite missing declarationgifn

(2]

(3]

(4]
(5]

Available at

(6]
(7]

9]

International Workshop on Program ComprehensiBitts-

burgh, PA, USA, May 5-7 1999.

N. A. Kraft, B. A. Malloy, and J. F. Powerg*re: Harness-

ing gcc to reverse engineer+€ applications. InSeminar

No. 05161: Transformation Techniques in Software Engi-

neering Schloss Dagstuhl, Germany, April 17-22 2005.

N. A. Kraft, B. A. Malloy, and J. F. Power. Toward an infras-

tructure to support interoperability in reverse engineering.

In Proceedings of the 12th Working Conference on Reverse

Engineering, WCRE'0Q%ittsbrugh, PA, November 2005.

John Lilley. PCCTS-based LL(1) C++ parser: Design and

theory of operation. Version 1.5, February 1997.

A. MacCormack, J. Rusnak, and C. Baldwin. Exploring the

structure of complex software designs: An empirical study

of open source and proprietary code. Working Paper 05-016,

Harvard Business School, Boston, MA, USA, 2004.

B. A. Malloy, T. H. Gibbs, and J. F. Power. Decorat-

ing tokens to facilitate recognition of ambiguous language

constructs.Software, Practice & Experieng83(1):19-39,

20083.

I. Parberry. Learn Computer Game Programming with Di-

rectX 7.0 Woodward Publishing Co., Plano, TX, USA,

2000.

lan Parberry, Timothy Roden, and Max B. Kazemzadeh. Ex-

perience with an industry-driven capstone course on game

programming: extended abstra8IGCSE Bull.37(1):91—

95, 2005.

J.W. Paulson, G. Succi, and A. Eberlein. An empirical

study of open-source and closed-source software products.

IEEE Transactions on Software Engineering0(4):246—

256, 2004.

E. Pazera.Focus on SDL Premier Press, Cincinnati, OH,

2003.

J. F. Power and B. A. Malloy. Metric-based analysis of

context-free grammars. IRroceedings of the 8th Inter-

national Workshop on Program Comprehensitimerick,

Ireland, June 2000.

J. F. Power and B. A. Malloy. Symbol table construction

and name lookup in ISO C++. 187th International Con-

ference on Technology of Object-Oriented Languages and

Systems, (TOOLS Pacific 200pages 57—68, Sydney, Aus-

tralia, November 2000.

S.P. Reiss and T. Davis. Experiences writing object-oriented

compiler front ends. Technical report, Brown University,

January 1995.

[22] J.A. Roskind. A YACC-able C++ 2.1 grammar, and the re-
sulting ambiguities. Independent Consultant, Indialantic FL,
1989.

[23] S. Singhaland B. Nguyen. The Java fac@ommunications
of the ACM 41(6):34—-37, June 1998.

[24] D.V. Steward. The design structure system: A method for
managing the design of complex systemiEEE Transac-
tions on Engineering Manageme@8(3):71-84, 1981.

[25] P. Tyma. Why are we using Jav&ommunications of the
ACM, 41(6):38-42, June 1998.

[26] D. van Heesch. Doxygen version 1.3.9.1. Available at
http://stack.nl/ dimitri/doxygen.

(10]

(11]

(12]

(13]

(14]

(18]

[16]

(17]

(18]

(19]

(20]

(21]

